Copied to
clipboard

?

G = C12.C24order 192 = 26·3

35th non-split extension by C12 of C24 acting via C24/C22=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C12.35C24, D12.31C23, Dic6.30C23, C4○D419D6, (C2×D4)⋊42D6, (C2×Q8)⋊34D6, C3⋊C8.14C23, D4⋊D613C2, D4⋊S319C22, Q8.13D67C2, C12.427(C2×D4), (C2×C12).218D4, (C6×D4)⋊46C22, C4.35(S3×C23), (C6×Q8)⋊38C22, Q8.14D613C2, D126C2213C2, C4○D1221C22, (C2×D12)⋊59C22, C35(D8⋊C22), D4.S317C22, C3⋊Q1616C22, (C3×D4).23C23, D4.23(C22×S3), (C22×C6).124D4, (C22×C4).298D6, C6.160(C22×D4), (C3×Q8).23C23, Q8.33(C22×S3), Q8.11D613C2, (C2×C12).557C23, Q82S318C22, (C2×Dic6)⋊69C22, C23.41(C3⋊D4), C4.Dic337C22, (C22×C12).292C22, (C6×C4○D4)⋊4C2, (C2×C4○D4)⋊8S3, (C2×C3⋊C8)⋊23C22, (C2×C4○D12)⋊31C2, (C2×C6).591(C2×D4), C4.121(C2×C3⋊D4), (C3×C4○D4)⋊18C22, (C2×C4.Dic3)⋊31C2, C22.21(C2×C3⋊D4), C2.33(C22×C3⋊D4), (C2×C4).203(C3⋊D4), (C2×C4).246(C22×S3), SmallGroup(192,1381)

Series: Derived Chief Lower central Upper central

C1C12 — C12.C24
C1C3C6C12D12C2×D12C2×C4○D12 — C12.C24
C3C6C12 — C12.C24

Subgroups: 616 in 262 conjugacy classes, 107 normal (45 characteristic)
C1, C2, C2 [×7], C3, C4 [×4], C4 [×4], C22 [×3], C22 [×9], S3 [×2], C6, C6 [×5], C8 [×4], C2×C4 [×6], C2×C4 [×10], D4 [×2], D4 [×12], Q8 [×2], Q8 [×4], C23, C23 [×2], Dic3 [×2], C12 [×4], C12 [×2], D6 [×4], C2×C6 [×3], C2×C6 [×5], C2×C8 [×2], M4(2) [×4], D8 [×4], SD16 [×8], Q16 [×4], C22×C4, C22×C4 [×2], C2×D4, C2×D4 [×3], C2×Q8, C2×Q8, C4○D4 [×4], C4○D4 [×8], C3⋊C8 [×4], Dic6 [×2], Dic6, C4×S3 [×4], D12 [×2], D12, C2×Dic3, C3⋊D4 [×4], C2×C12 [×6], C2×C12 [×5], C3×D4 [×2], C3×D4 [×5], C3×Q8 [×2], C3×Q8, C22×S3, C22×C6, C22×C6, C2×M4(2), C4○D8 [×4], C8⋊C22 [×4], C8.C22 [×4], C2×C4○D4, C2×C4○D4, C2×C3⋊C8 [×2], C4.Dic3 [×4], D4⋊S3 [×4], D4.S3 [×4], Q82S3 [×4], C3⋊Q16 [×4], C2×Dic6, S3×C2×C4, C2×D12, C4○D12 [×4], C4○D12 [×2], C2×C3⋊D4, C22×C12, C22×C12, C6×D4, C6×D4, C6×Q8, C3×C4○D4 [×4], C3×C4○D4 [×2], D8⋊C22, C2×C4.Dic3, D126C22 [×2], Q8.11D6 [×2], D4⋊D6 [×2], Q8.13D6 [×4], Q8.14D6 [×2], C2×C4○D12, C6×C4○D4, C12.C24

Quotients:
C1, C2 [×15], C22 [×35], S3, D4 [×4], C23 [×15], D6 [×7], C2×D4 [×6], C24, C3⋊D4 [×4], C22×S3 [×7], C22×D4, C2×C3⋊D4 [×6], S3×C23, D8⋊C22, C22×C3⋊D4, C12.C24

Generators and relations
 G = < a,b,c,d,e | a12=b2=c2=e2=1, d2=a6, bab=a-1, ac=ca, ad=da, eae=a7, bc=cb, bd=db, ebe=a9b, cd=dc, ece=a6c, de=ed >

Smallest permutation representation
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(2 12)(3 11)(4 10)(5 9)(6 8)(13 22)(14 21)(15 20)(16 19)(17 18)(23 24)(25 27)(28 36)(29 35)(30 34)(31 33)(37 38)(39 48)(40 47)(41 46)(42 45)(43 44)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)
(1 32 7 26)(2 33 8 27)(3 34 9 28)(4 35 10 29)(5 36 11 30)(6 25 12 31)(13 39 19 45)(14 40 20 46)(15 41 21 47)(16 42 22 48)(17 43 23 37)(18 44 24 38)
(1 19)(2 14)(3 21)(4 16)(5 23)(6 18)(7 13)(8 20)(9 15)(10 22)(11 17)(12 24)(25 44)(26 39)(27 46)(28 41)(29 48)(30 43)(31 38)(32 45)(33 40)(34 47)(35 42)(36 37)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (2,12)(3,11)(4,10)(5,9)(6,8)(13,22)(14,21)(15,20)(16,19)(17,18)(23,24)(25,27)(28,36)(29,35)(30,34)(31,33)(37,38)(39,48)(40,47)(41,46)(42,45)(43,44), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36), (1,32,7,26)(2,33,8,27)(3,34,9,28)(4,35,10,29)(5,36,11,30)(6,25,12,31)(13,39,19,45)(14,40,20,46)(15,41,21,47)(16,42,22,48)(17,43,23,37)(18,44,24,38), (1,19)(2,14)(3,21)(4,16)(5,23)(6,18)(7,13)(8,20)(9,15)(10,22)(11,17)(12,24)(25,44)(26,39)(27,46)(28,41)(29,48)(30,43)(31,38)(32,45)(33,40)(34,47)(35,42)(36,37)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (2,12)(3,11)(4,10)(5,9)(6,8)(13,22)(14,21)(15,20)(16,19)(17,18)(23,24)(25,27)(28,36)(29,35)(30,34)(31,33)(37,38)(39,48)(40,47)(41,46)(42,45)(43,44), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36), (1,32,7,26)(2,33,8,27)(3,34,9,28)(4,35,10,29)(5,36,11,30)(6,25,12,31)(13,39,19,45)(14,40,20,46)(15,41,21,47)(16,42,22,48)(17,43,23,37)(18,44,24,38), (1,19)(2,14)(3,21)(4,16)(5,23)(6,18)(7,13)(8,20)(9,15)(10,22)(11,17)(12,24)(25,44)(26,39)(27,46)(28,41)(29,48)(30,43)(31,38)(32,45)(33,40)(34,47)(35,42)(36,37) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(2,12),(3,11),(4,10),(5,9),(6,8),(13,22),(14,21),(15,20),(16,19),(17,18),(23,24),(25,27),(28,36),(29,35),(30,34),(31,33),(37,38),(39,48),(40,47),(41,46),(42,45),(43,44)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36)], [(1,32,7,26),(2,33,8,27),(3,34,9,28),(4,35,10,29),(5,36,11,30),(6,25,12,31),(13,39,19,45),(14,40,20,46),(15,41,21,47),(16,42,22,48),(17,43,23,37),(18,44,24,38)], [(1,19),(2,14),(3,21),(4,16),(5,23),(6,18),(7,13),(8,20),(9,15),(10,22),(11,17),(12,24),(25,44),(26,39),(27,46),(28,41),(29,48),(30,43),(31,38),(32,45),(33,40),(34,47),(35,42),(36,37)])

Matrix representation G ⊆ GL4(𝔽73) generated by

14700
66700
005966
00766
,
07200
72000
005966
00714
,
72000
07200
0010
0001
,
46000
04600
00460
00046
,
0010
0001
1000
0100
G:=sub<GL(4,GF(73))| [14,66,0,0,7,7,0,0,0,0,59,7,0,0,66,66],[0,72,0,0,72,0,0,0,0,0,59,7,0,0,66,14],[72,0,0,0,0,72,0,0,0,0,1,0,0,0,0,1],[46,0,0,0,0,46,0,0,0,0,46,0,0,0,0,46],[0,0,1,0,0,0,0,1,1,0,0,0,0,1,0,0] >;

42 conjugacy classes

class 1 2A2B2C2D2E2F2G2H 3 4A4B4C4D4E4F4G4H4I6A6B6C6D···6I8A8B8C8D12A12B12C12D12E···12J
order12222222234444444446666···688881212121212···12
size112224412122112224412122224···41212121222224···4

42 irreducible representations

dim11111111122222222244
type++++++++++++++++
imageC1C2C2C2C2C2C2C2C2S3D4D4D6D6D6D6C3⋊D4C3⋊D4D8⋊C22C12.C24
kernelC12.C24C2×C4.Dic3D126C22Q8.11D6D4⋊D6Q8.13D6Q8.14D6C2×C4○D12C6×C4○D4C2×C4○D4C2×C12C22×C6C22×C4C2×D4C2×Q8C4○D4C2×C4C23C3C1
# reps11222421113111146224

In GAP, Magma, Sage, TeX

C_{12}.C_2^4
% in TeX

G:=Group("C12.C2^4");
// GroupNames label

G:=SmallGroup(192,1381);
// by ID

G=gap.SmallGroup(192,1381);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,184,675,570,1684,235,102,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^12=b^2=c^2=e^2=1,d^2=a^6,b*a*b=a^-1,a*c=c*a,a*d=d*a,e*a*e=a^7,b*c=c*b,b*d=d*b,e*b*e=a^9*b,c*d=d*c,e*c*e=a^6*c,d*e=e*d>;
// generators/relations

׿
×
𝔽